Dietary prenatal choline supplementation alters postnatal hippocampal structure and function.
نویسندگان
چکیده
Choline, a compound present in many foods, has recently been classified as an essential nutrient for humans. Studies with animal models indicate that the availability of choline during the prenatal period influences neural and cognitive development. Specifically, prenatal choline supplementation has been shown to enhance working memory and hippocampal long-term potentiation (LTP) in adult offspring. However, the cellular mechanisms underlying these effects remain unclear. Here we report that choline supplementation, during a 6-day gestational period, results in greater excitatory responsiveness, reduced slow afterhyperpolarizations (sAHPs), enhanced afterdepolarizing potentials (ADPs), larger somata, and greater basal dendritic arborization among hippocampal CA1 pyramidal cells studied postnatally in juvenile rats (20-25 days of age). These data indicate that dietary supplementation with a single nutrient, choline, during a brief, critical period of prenatal development, alters the structure and function of hippocampal pyramidal cells.
منابع مشابه
Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats.
Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influence...
متن کاملPrenatal choline exposure alters hippocampal responsiveness to cholinergic stimulation in adulthood.
Manipulation of dietary choline levels during gestation results in enduring neurobehavioral changes in offspring that last into adulthood. Alterations of hippocampal function and memory are among the most striking changes. Depending upon the measures assessed, prenatal choline supplementation tends to promote excitatory synaptic efficacy in hippocampal circuits while prenatal choline deficiency...
متن کاملPrenatal choline supplementation alters hippocampal N-methyl-D-aspartate receptor-mediated neurotransmission in adult rats.
Manipulation of dietary choline levels in pregnant rats has been shown to result in enduring alterations in memory and hippocampal function of the offspring, but the mechanisms underlying these effects remain unclear. Hippocampal slices were prepared from adult rats that were offspring of dams fed control, choline supplemented, or choline deficient diets on days 12-17 of gestation. N-methyl-D-a...
متن کاملAge-related declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal choline supplementation in rats.
Supplemental choline in the maternal diet produces a lasting enhancement in memory in offspring that resists age-related decline and is accompanied by neuroanatomical, neurophysiological and neurochemical changes in the hippocampus. The present study was designed to examine: 1) if prenatal choline supplementation alters behaviors that contribute to risk or resilience in cognitive aging, and 2) ...
متن کاملProtective effects of prenatal choline supplementation on seizure-induced memory impairment.
Choline is an essential nutrient for rats and humans, and its availability during fetal development has long-lasting cognitive effects (Blusztajn, 1998). We investigated the effects of prenatal choline supplementation on memory deficits associated with status epilepticus. Pregnant rats received a control or choline-supplemented diet during days 11-17 of gestation. Male offspring [postnatal day ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2004